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Motivation

I How do we balance size and structure of nonzeros in a matrix
to draw out key features?

I Can we make effective use of spectral information?

I κ∞(DAE) minimised over all diagonal scalings if D|A|E and
E−1|A−1|D−1 have equal row sums.



Balancing a Matrix

DA, AD, DAD−1, D1/2 AD1/2, D1AD2

I Choice of where to apply balance, measure of balance,
method of balance.

I We choose to find D1 and D2 so that D1AD2 has equal
row/column sums.

I We use a fast Newton iteration to ensure rapid computation.

I Elements that link together almost disjoint blocks are
highlighted.



Spectral Properties

I P = D1|A|D2.

I We can extend Fiedler/Perron–Frobenius theory.

I If P has k disjoint components principal singular value is
repeated k times.

I σ1 = 1.

I Typical singular vector: permutation of[
1 . . . 1 0 . . . 0

]T
.

I We can infer block entire block structure from a single
singular vector.

I For symmetric matrices we can ensure D1 = D2 and work
with eigenvectors.



Algorithm

1. Preprocess.

2. Balance.

3. Calculate singular vector(s).

4. Split vector(s) to identify blocks.



Preprocessing

I We want to avoid scaling a matrix if it is not fully
indecomposable.

I Initialise by looking for BTF and work on biggest block.

I After roughly balancing matrix try and remove strongly
diagonally dominant parts of diagonal.



Fast Balancing

I Suppose A is symmetric and DADe = e where
D = diag(x).

I Rewrite: Ax− diag(x)−1e = 0.

I Solve using Newton method. Newton step solved
approximately with CG.

I Easily adapted to nonsymmetric A.

I Typically requires a small number of matrix-vector products
using A and AT .



Computing Singular Vectors

I We compute p = 1, 2, 3, 4, 5, . . . singular vectors with eigs.

I Convergence can be slow.

I Output dependent on p and initial guess.

I We project out contribution of e.

I We can use information from pth vector to further project to
enhance (p + 1)th.



Splitting A Vector, I

I Reorder components of vector by size.

I Identify jumps with an edge detecting algorithm (Canny filter).

I Jumps resolved at multiple levels.

I Parameter free determination of k blocks.



Splitting A Vector, II

I We can use (p + 1)th vector to refine blocks determined by
first p.

I Currently we split all blocks according to information supplied
by latest vector.

I To avoid countless tiny blocks we may be better refining
existing blocks.

I At the end we can reconstruct matrix based on all blocks
uncovered.

I For example, we can attempt to pack the diagonal with large
elements.



Example: Matrix Blocks



Example: Network Clusters



Example: The Need for Preprocessing



Future Work, I

I We aim to provide a block structure amenable to factorisation
and/or preconditioning.

I Preprocessing: there is no point in trying to scale a matrix if
it is not fully indecomposable. We guard against this but
would like to do better.

I Need to fully understand role of diagonal dominance in the
substructures.

I Bi-clustering: algorithm can work with rectangular input.

I To what extent can we reveal useful information simply by
using adjacency matrix of A?



Future Work, II

I We want to fill some theoretical gaps.

I Perturbation theory for singular vectors of nearly block
matrices is missing.

I How much can we using existing theory on Laplacians?

I We use a measure of cluster quality in reconstructing
blocks. . . are we using the right one?


